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Shape instability of a biomembrane driven by a local softening of the underlying actin cortex
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We present a theory showing that local shape instabilities of composite biological membranes, consisting of
a lipid bilayer and an underlying actin cortex, can be triggered by a local softening of the membrane-associated
cytoskeleton. A membrane containing such cortical defects can form blisters or invaginations, depending on
external conditions. The theoretical predictions agree with observations provided by two sets of experiments:
~i! microscopic observations of shape changes of giant vesicles with underlying shells of a thin actin network
show the formation of local blisters and~ii ! micropipet aspiration experiments ofDictyostelium discoideum
cells in which we observed the formation of blisters in the aspirated cell part. In the latter experiments, the
existence of a hole in the underlying cortex is confirmed by observation of the entrance of cell organelles into
the blister. Our model may also be applied to the formation of lobopodia, fast-growing cell protrusions that
play an important role in the locomotion and spreading of biological cells.

PACS number~s!: 87.16.2b, 87.19.Rr
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I. INTRODUCTION

This paper describes a mechanical model of the sur
protrusions of biological cells. Every mechanical model o
cell has to take into account the cell’s morphology. A b
logical cell exhibits a layered architecture. The outerm
layer is the fluid mosaic membrane as described by Sin
and Nicolson@1#. It consists of a compound material of pho
pholipids and membrane proteins and shows a thicknes
some nanometers. In parenchymal animal cells~i.e., tissue
cells such as liver cells!, on which we will focus for the res
of the paper, the plasma membrane carries an additional
layer of polyelectrolytes at the outside called the glycoca
This fluid mosaic membrane exhibits the properties of a tw
dimensional fluid@2#.

In close proximity to the fluid mosaic membrane a seco
layer, the cortex, follows@3–5#. In most cases, it contain
high concentrations of microfilaments~i.e., filamentous ac-
tin! and crosslinking proteins. This layer has a gel-like co
sistency and is very thin compared to the size of the cell.
tightly coupled to the fluid mosaic membrane by colloid
interactions~e.g., electrostatics! and, most importantly, by
specific binding between integral membrane proteins
cortical proteins. From the point of view of mechanics, c
tex and membrane usually behave as one layer, from now
termed the ‘‘compound membrane.’’ The fluid mosaic me
brane serves as a barrier, controlling osmotic pressure
surface potential, whereas the actin cortex endows the c
pound membrane with mechanical stiffness~i.e., solidlike
properties!.

The core of the cell is filled with cytoplasm and o
ganelles. The cytoplasm also contains cytoskeletal struct
that contribute to the mechanical behavior of the cell. Ho
ever, in the cells considered here, the density of polymer
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the cytoplasm is greatly reduced as compared to the cor
Many of the essential functions of biological cells~e.g.,

engulfing food, spreading on substrates, and locomotion! re-
quire the formation of surface protrusions@6–8#. These pro-
trusions exhibit very different shapes, speeds, and mech
cal properties@6,7#. Therefore it is extremely unlikely tha
they are all caused by a single underlying mechanism. In
paper we will focus on blebs, also called lobopodia. T
type of cell protrusion is the most rapidly extending one. T
formation of lobopodia is common for healthy cells an
plays an important role in cell spreading on substrates
cell locomotion. The formation of lobopodia has been exte
sively studied for locomoting blebbing Walker carcinosa
coma cells@9,10#, melanoma cell lines lacking actin-bindin
proteins@11,12#, and locomotingAmoeba proteus@13#.

On living cells, lobopodia~blebs! develop in a few sec-
onds. Therefore the initial stages of bleb growth are rar
seen. The shape of a well-developed bleb is close to a sp
cal cap. Later on we will show that this is not the case in
very first stage of lobopodium growth. Growing blebs co
tain no filamentous actin. Their growth can be triggered
intracellular pressure@10,14#. Together with their spherica
shape and their rapid growth, this shows that bleb format
is driven by pressure, either hydrostatic or osmotic. The v
ume of a bleb increases linearly in time until the grow
suddenly stops. Interruption of bleb growth occurs due to
formation of a new cortical structure lining the bleb’s mem
brane, i.e., polymerization of actin at the membra
@6,9,12,13#. Most importantly, the cortex and fluid mosa
membrane split during bleb growth. Blebs grow at locatio
where the cortex is weakened~for a sketch of this proces
see Fig. 1!. This was shown by immunofluorescence tec
niques for Walker carcinosarcoma cells@9# and by genetic
techniques for melanoma cells@11#. After the initialization at
a weak spot of the cortex, blebs can grow by two differe
modes. Either the base of the bleb~i.e., the area where the
‘‘old’’ cortex is separated from the fluid mosaic membran!
grows or it remains constant. In the first case, the corte
successively peeled off the membrane@see Fig. 1~c!#. This
3974 ©2000 The American Physical Society
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happens inAmoeba proteus@13#. In the latter case, the fluid
mosaic membrane flows with respect to the cortex@15# to
allow a continuous ‘‘inflation’’ of the bleb@see Fig. 1~d!#.
This takes place in melanoma cells devoid of filamin, a m
jor actin cross-linking protein@12#.

The initial phase of bleb development is a very intrigui
process on which this paper is focused. Here we report
observation of blister formation in regions where the su
membraneous cytoskeleton exhibits a local softening
actin-filled vesicles andDictyosteliumcells. We show theo-
retically that a local softening of the cytoskeleton necessa
gives rise to an instability of the membrane shape.

The paper is organized as follows. We report our exp
mental observations of local shape changes of the m
branes of giant vesicles with reconstituted actin shells in S
II A, and of Dictyosteliumcells in Sec. II B. In Sec. III A we
present a general theoretical study of the problem. We in
duce a function describing the local softening and deduc
basic equation that has to be solved to determine the l
shape instability arising from local softening. We give
complete description of the membrane instability and ov
critical behavior assuming that the solution of this equat
is found. In Appendixes A–D, we present exact and appro
mate solutions of the basic equations for different types
soft regions. In Sec. IV we discuss our results and their
plicability to phenomena observed after the poisoning
liver cells with phalloidin or cytochalasin B, two alcaloid
acting specifically on the actin cytoskeleton. In this examp
the formation of blebs and invaginations is observed depe
ing on the experimental conditions. This can be easily
scribed by our theoretical model.

FIG. 1. Sketches of the formation of lobopodia~blebs!. The gray
areas symbolize the cortex, the heavy lines the fluid mosaic m
brane. The gray lines represent the fluid mosaic membrane
previous instant.~a! Growth at a location where the cortex is wea
ened.~b! Growth at a cortical hole.~c! Bleb expansion by succes
sive pealing; i.e., the base of the bleb grows.~d! Bleb expansion by
successive inflation; i.e., the base of the bleb remains stationa
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II. LOCAL SHAPE INSTABILITIES DRIVEN BY DEFECTS
IN ARTIFICIAL AND NATURAL ACTIN CORTICES:

EXPERIMENTS

A. Local shape instabilities in actin-filled vesicles

Vesicles filled with polymerized filamentous actin, whic
forms a thin shell beneath the inner leaflet~cortex!, provide a
model system allowing us to study the mechanical proper
of cell membranes. The method of preparation of the ac
filled vesicles and their mechanical properties are repo
elsewhere@16,17#. Giant vesicles~diameter 5–20mm! were
prepared from dimyristoylphosphatidylcholine~DMPC! con-
taining 2.5 mol % of the Mg21 ~Ca21! ionophore A-23187 in
a solution of monomeric actin at a temperature of 30 °C, i
well above the main transition temperature of DMPC
about 24 °C. Polymerization of actin was induced by 2 m
MgCl2, the Mg21 ions being transported into the vesicles v
the ionophore. Polymerization of external actin was su
pressed by DNAase I, an enzyme binding with high spe
ficity to monomeric actin, thus preventing the polymeriz
tion. The actin-containing vesicles were then observed
phase-contrast microscopy on a thermostated stage. Filam
tous actin concentrated beneath the lipid bilayer, as w
demonstrated with fluorescent-labled actin~data are not
shown here!.

A slight increase in the temperature~by 1 to 2 °C! led to
the formation of blisters protruding from the surface. Figur
2~a!–2~c! show successive shapes of such a vesicle du
the temperature increase. Figure 3~a! shows a typical phase
contrast micrograph of the complete equatorial contour
another vesicle. One can clearly distinguish flattened regio
which exhibit a dark contour, from blisters exhibiting only
faint contour. Observations of video sequences show that

-
a

.

FIG. 2. Phase-contrast micrograph of an actin-containing ves
at three different temperatures:~A! at 26.0 °C,~B! at 26.7 °C, and
~C! at 32.8 °C. Image~D! shows an enlargement of a protrusio
shown in image~C! ~dotted frame!. The blister demonstrates man
fested fluctuations seen as the blurred image of the membrane
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3976 PRE 62A. BOULBITCH et al.
dark regions are relatively stiff, whereas the contours of
blisters are strongly fluctuating. Both observations, mic
scopic contrast and membrane fluctuations, indicate that
membrane is attached to the ‘‘cortex’’ in the flattened
gions, whereas it is not supported by a cortex in the blis
regions. In Fig. 2~d! and 3~b!, one blister is enlarged, show
ing that below the membrane protrusion, the dark contou
the composite actin/membrane cortex is interrupted. Thi
considered to be a local defect~possibly a cortex hole! in the
theory developed below. Note that this type of temperatu
induced shape change differs drastically from the sh
transformations observed experimentally for pure DM
vesicles and described theoretically@18#.

B. Local shape instability driven by a defect in the actin
cortex of a cell plasma membrane during micropipet aspiration

of Dictyostelium discoideumcells

In this set of experiments, we studied the local deform
tions of amoebalike cells of the slime moldDictyostelium

FIG. 3. Actin-containing giant phospholipid vesicle as seen
phase-contrast video microscopy. Actin concentration was 7mM.
Vesicles were produced as described in the text.~A! Overview: a
whole vesicle focused in the equator level. The box marks the
that is shown enlarged below.~B! Detail showing the contour o
one of the blisters protruding from the vesicle shown in~A!. The
white trace was drawn with respect to the dynamic fluctuations
the blister membrane clearly seen on the video record.
e
-
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r
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discoideumby aspiration with glass micropipets~cf @19,20#
for details aboutDictyosteliumcells!. Cylindrical glass mi-
cropipets have been used routinely for determining prop
ties of blood cells or lipid vesicles~for a review of the mi-
cropipet aspiration technique, see@21#!. The pipet was
connected to a water manometer, allowing us to apply w
defined suction pressures to the cell. In this study, we u
pipets with an inner diameter of about 4mm, which is small
compared to the typical diameter ofDictyostelium cells,
which is about 15mm. Cells were cultivated on standar
medium agar plates usingKlebsiella aerogenesas a bacterial
food source, and were treated as previously described@22#.

Suction pressures of about 800 Pa were used to asp
parts of the cell membrane and the cytoplasm@Fig. 4~a!#.
Frequently, cells responded to the applied suction pressu
a stepwise manner where the repeated formation of sm
spherical protrusions could be observed. These protrus
expanded within fractions of a second to fill the whole pip
diameter, leading to a sudden increase in the length of
aspirated cell part. The shape of these protrusions rema

y

ea

f

FIG. 4. A wild-type AX2Dictyosteliumcell, observed with dif-
ferential interference contrast microscopy, has been aspirated w
glass micropipet at the cell front~II !. Frequently, formation of smal
spherical protrusions occurred in the pipet, here at a suction p
sure of 1000 Pa~a!. The arrows denote the position of a certain c
organelle within the aspirated cell part~I!. The transient formation
of a spherical blister can be observed in~b!. These blisters grow
rapidly until eventually a new stable cell front is formed~c!. Blis-
ters always appear at the site of a defect in the actin cortex of
cell membrane. While the defect itself cannot be seen, its existe
is clear from the fact that the influx of organelles into the new
formed protrusion is confined to a small pore. The white line in~c!
marks the path taken by the organelle~I!. As this organelle is bigger
than the formed pore, the organelle obstructs the pore for a w
before it can squeeze through. Note that the actin cortex rem
visible at the old position of the cell front~c, II!.
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spherical throughout the growth process. Protrusion form
tion occurred at different sites of the front cap of the as
rated part of the cell@Fig. 4~b! shows formation of the pro
trusion in the middle of the cap#. This suggests that som
local weakening of the internal structure of the compos
cell membrane determines the formation and location of
protrusions. Most likely, the weakened structure is
membrane-associated actin cortex and the protrusions
formed above defects in the actin shell. In some experime
we observed the influx of organelles into an emerging p
trusion. An example is shown in Figs. 4~b! and 4~c!. This
suggests that the cortical defects are in most cases s
cortical pores located right at the base of the protrusion.
ditional evidence for this notion is provided by fluorescen
studies using mutantDictyosteliumcells that contain actin
that was genetically fused with a green fluorescent pro
~GFP!. Using a fluorescence microscope, high concentrati
of actin such as cortical structures show up as bright reg
against the darker background in these mutant cells. Figu
shows the formation of a protrusion for a GFP mutant c
Figs. 5~a! and 5~b! show the cell in differential interferenc
microscopy before and after the protrusion has formed. F

FIG. 5. Shown is the formation of a protrusion for an aspira
mutant cell of Dictyostelium discoideumcontaining GFP-labeled
actin. ~A! The cell aspirated into the micropipet. The arrow ind
cates the cap of the aspirated part.~B! The cell after formation of
the small bleblike protrusion in conventional microscopy~as that
shown in Fig. 4!; ~i! the cap,~ii ! the protrusion.~C! shows the
image of the same cell in fluorescence microscopy. Bright regi
denote high actin concentrations. A bright band~arrow! is visible at
the base of the newly formed protrusion, indicating the existenc
a cortical structure at this position. The white traces were dra
beneath the lighter region of the image representing the memb
clearly seen on the video record.
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ure 5~c! shows the same cell in fluorescence microsco
about 1 sec after 5~b!. One can clearly identify a bright ban
at the position marked by the arrow. This indicates that th
is indeed a cortical structure at the position from which t
protrusion originated, and that splitting of the fluid mosa
membrane and actin cortex occurred.

Our observations imply that blisters grow from cortic
defects. The process closely resembles the formation
lobopodia in undisturbed cells. Therefore it may be describ
as aspiration-induced formation of lobopodia or blebs.

III. THEORETICAL DESCRIPTION OF LOCAL SHAPE
INSTABILITIES OF THE CELL MEMBRANE

The animal cell membrane represents a composite s
composed of extracellular polymers, a lipid bilayer, and
actin cortex. We focus on the bilayer and the cortex sin
they play an important role in the stability of the cell shap
Strong attraction between these two subshells~driven by
nonspecific forces and integral membrane proteins spe
cally binding to cortex components! provides the integrity of
the composite membrane, which is very important for
biological functions. Detachment of the bilayer from the co
tex demands either very high local mechanical loads~as take
place, for example, under tether formation! or the application
of biochemical agents to break the bonds of the integral p
teins with the cortex.

However, the actin cortex and the underlying cytoskele
are dynamic structures. Functional and structural change
the states of cells constantly demand local depolymeriza
of actin filaments in some cell regions and their local po
merization in the others. Besides that, local ruptures of
cortex or the underlying cytoskeleton can already occur
moderate loads or under the action of drugs. These me
nisms lead to local structural inhomogeneities of the me
brane. They manifest themselves in the membrane’s
chanical behavior since they give rise to a local decreas
its rigidity. We show here that such a local softening cau
shape instabilities of the cell membrane in the form of sp
taneous local deflections: blisters or invaginations. These
stabilities are driven by a gradient of hydrostatic or osmo
pressure across the membrane. Please note that the thre
for deflection formation over such defects was observed
our micropipet experiments. In Sec. III A we show that th
threshold can be explained by a local decrease in the m
brane rigidity. If the pressure only slightly exceeds t
threshold, the membrane possessing such a defect is
formed as a whole. However, far from the threshold the pr
sure becomes strong enough to overcome the attraction
tween bilayer and cortex, which results in the splitting of t
compound membrane. This phenomenon is described in
III B within a simple two-shell model.

A. The cell free energy and a general description of the local
instability

In order to describe a local deflection of the membra
one should take into account contributions to the me
brane’s elastic energy by describing the energetic cost of
bending, lateral stretching, and deformation of the bulk
toskeleton@23#. To simplify the mathematical description
we consider an initially spherical cell with a radiusR. The
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free energy of an arbitrary distortion of the initial~spherical!
shell shape can be expressed in the form@23#

F5 R $ 1
2 ~kcD2c1BcDc1D0c2!1 1

3 a3c31 1
4 a4c4%dA,

~1!

where k is the membrane-bending elasticity modulus. T
function c5c(u,w) denotes the shell displacement that
normal to the initial spherical surface of the membraneu
and w are the spherical angles,A is the membrane surfac
area, andD is the Laplace-Beltrami operator on the sphereB
and D are membrane parameters. They are functions of
pressure differencep5pout2pin , the spontaneous curvatur
c, the lateral compressibility modulus of the membranel,
and Young’s modulusEcyt and Poisson’s ratiovcyt of the
bulk cytoskeleton:

B5
pR

2
1

k~21cR!

R2 , D05
p

R
1

2kc

R3 1
4l

R2

1
Ecyt

~122vcyt!R
.

The first term of Eq.~1! describes the bending elasticity o
the membrane. The second term in Eq.~1! describes the en
ergy contribution due to the change of the membrane sur
area. The first item inB represents the well-known Laplac
expression for the tension of a spherical surface radiuR
subjected to the osmotic pressure differencep. The second
describes the contribution of the bending elasticity play
the role of the surface tension. Hence the parameterB from
the second term of Eq.~1! should be considered the effectiv
surface-tension coefficient of the membrane. Finally,
third term of Eq.~1! describes the membrane energy tha
proportional to the square of the displacement,c. Therefore
it is analogous to the conventional Hook’s law, with the p
rameterD playing the role of an effective spring constant
the membrane~with respect to the normal displacemen!.
Several effects, such as the osmotic pressure difference~the
first item!, the bending elasticity~the second item!, the lat-
eral compressibility modulus~the third term!, and the spring
constant of the bulk cytoskeleton~the last term of expressio
D! contribute to the effective spring constantD. The bending
elasticity modulusk, the lateral compressibility modulus o
the membranel, and the spontaneous curvaturec are phe-
nomenological parameters characterizing mechanical pro
ties of the composite membrane as a whole, rather tha
some of its constituents.

Several different phenomena contribute to nonlinear te
of the free-energy expression that are characterized by
coefficientsa3 and a4 . Their detailed discussion is beyon
the scope of this paper, and we therefore considera3 anda4
as phenomenological parameters, witha4 always positive
while a3 can have either sign. Note that in the case o
homogeneous shell, the parametersa3 anda4 are constants
In contrast, in the vicinity of an inhomogeneity they ma
depend on coordinates:a3,45a3,4(R). A detailed derivation
of the free energy~1! describing a local deformation of
spherical cell membrane can be found elsewhere@23#.

The undisturbed spherical cell shape corresponds to
value c50. Local softening of the membrane means th
e
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either the value of the lateral compressibility modulusl or
the elasticityEcyt of the bulk cytoskeleton in the vicinity o
the membrane surface is decreased locally. Both cases r
in a lateral dependence of the parameterD05(u,w), which
can be expressed asD0(u,w)5D2U(u,w), whereD is a
constant. The variation of the parameterD0 with the surface
coordinates is taken into account by introducing the funct
U(u,w).0, which describes the local softening. In the fo
lowing, U(u,w) is referred to as ‘‘the softening function.’
This function exhibits a maximum value in the region
softening and decays to zero outside this region. In the
lowing, we consider soft regions whose widths are mu
smaller than the cell radiusR. One can see that in the case
actin-filled vesicles, the functionU(u,w) is proportional to
the decrease of theF-actin concentration in the defects of th
cortex in such a way that the integralrU(R)dA is propor-
tional to the decrease in the amount of filamentous actin s
the soft regions. In the case of a cell softening, variations
the parameterD can arise either from a local softening of th
actin cortex~i.e., related to the local decrease of the late
compressibility modulusl! or from a local softening of the
underlying cytoskeleton~i.e., caused by the local decrease
Ecyt!. In either case the softening function is related to t
decrease of the actin concentration or the cross-linker den
in the soft region of the cortex or of the cytoskeleton.

Variation of the energyF yields the following equation of
shape equilibrium:

kD2c1BDc1Dc2U~R!c1a3c21a4c350. ~2!

Equation ~2! has the trivial solutionc50 describing the
spherical cell shape. However, under certain conditions
solution becomes unstable and a nontrivial solutionc(R)
Þ0 arises, which describes a nonspherical cell shape. In
der to study the instability threshold, consider an auxilia
eigenvalue equation obtained by the linearization of Eq.~2!
in the vicinity of its trivial solution:

kD2vn1BDvn2U~R!vn5Lnvn , ~3!

wherevn are the eigenfunctions andLn are the eigenvalues
of the auxiliary equation enumerated byn that in general can
take discrete and continuous values.

In the following, we outline a possible solution of Eq.~2!
and study general properties of the phenomena, providingLn
andvn have been found. In order to show that such solutio
exist, we then give exact solutions of Eq.~3! for several
softening functions.

Assume that Eq.~3! possesses a discrete spectrum, or t
at least a part of the spectrum is discrete and that we h
found the eigenvaluesLn (n51,2,3, . . . ; L1,L2, . . . ! of
the discrete part of the spectrum and the correspond
eigenfunctionsvn(R).

A solution of Eq.~2! can be found by evoking the theor
of branching of nonlinear equations@24#. This theory pre-
dicts that as soon as the parameterD of Eq. ~2! becomes
equal to the first eigenvalueL1 of the auxiliary equation~3!,
the trivial solutionc50 becomes unstable. Denote this cri
cal value of the parameterD as D* 5L1(B,k). One can
consider this spectral condition as an implicit relation th
determines the critical values of internal cell parameters~as,
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for example, the critical valuep* of the osmotic pressure!
leading to the instability of the spherical cell shape.

Assume now that the eigenfunctionv1(R) and the corre-
sponding eigenvalueL1 of the auxiliary equation~3! have
been found. As soon as the parameterD becomes smalle
thanD* 5L1 the solutionc(R)Þ0 branches off the trivial
solutionc50. The main term ofc(R) has the form

c~R!5jv1~R!1O~j2! ~4!

@24#, wherej is the amplitude of the local deflection. Th
absolute value of the amplitudej is assumed to be small. I
will be determined in such a way that the expression Eq.~4!
gives an asymptotically exact solution of Eq.~2! @24# de-
scribing the equilibrium cell shape. The dependence of
solution~4! on spherical coordinatesu andw is described by
the eigenfunctionv1(R)[v1(u,w), which we assume to
know. Substituting the solution~4! into the free-energy func
tional ~1! yields

F~j!5 1
2 «V2j21 1

3 V3a3̄j31 1
4 V4a4̄j4, ~5!

with Vn5*$v1(R)%ndA (n52,3,4), am̄

5Vm
21*am(R)$v1(R)%mdA, with m53,4 and «5D2L1 .

The expression foram̄ takes into account that in general th
phenomenological parametersa3 and a4 may possess som
dependence on coordinates in the soft region of the a
cortex. If this dependence can be neglected, one findsam̄
[am .

Thus the problem is reduced to the investigation of
simple functionF(j) @Eq. ~5!#, the coefficients of which are
independent of the coordinates. Though the constantsVn and
am̄ are still unknown, the simple structure of the free ene
F(j) makes it possible to describe some general prope
of the bifurcation. From the mathematical point of view, t
problem is analogous to that of a description of a phase t
sition within the Landau theory, namely to the case when
symmetry allows for the existence of a cubic invariant@25#.
The amplitudej plays a role analogous to that of the ord
parameter. The equilibrium state corresponds to a glo
minimum of the free energyF(j), Eq. ~5!. Minimization of
the free energy is described in Appendix A. This analy
shows the following. The equation of equilibrium]F/]j
50 has the trivial solutionj50. This solution describes th
cell without any blister or invagination. It corresponds to t
global free-energy minimum~and hence to the equilibrium
state! at «.«b . Here

«b5
2a3̄

2

9a4̄

V3
2

V2V4

~6!

is the value corresponding to the bifurcation point. At«
<«b , one of the two nontrivial solutions,

j5
2ā3V36Aā3

2V3
224V2V4ā4«

2V4ā4
, ~7!

corresponds to the equilibrium state. In order to obtain
global minimum of the free energy, one must choose in
~7! the ‘‘1’’ sign if ā3,0 and the ‘‘2’’sign if otherwise. If
e

in

e

y
es

n-
e

al

s

e
.

j.0 (ā3,0) of the amplitude~7! describes the blister; the
casej,0 (ā3.0) corresponds to the invagination. One c
break the plane («,a3̄) into parts where the free energy, E
~5!, has different minima—this yields the bifurcation dia
gram. It is shown in Fig. 6. The detailed analysis and d
scription of the bifurcation diagram is given in Appendix A

Thus we have shown that if Eq.~3! has a nontrivial solu-
tion for a softening functionU(R), the local shape instability
arises atD5D* . However, we do not have any informatio
concerning the exact form ofU(R). Moreover, it depends on
the form of the softening function if Eq.~3! has a nontrivial
solution. Therefore it is important to verify that Eq.~3! has a
nontrivial solution corresponding to a discrete spectrum
least for some functions of softening. This can be done
exactly solving Eq.~3! for several different reasonable func
tions of softening. There exists, however, an important c
allowing for a universal consideration: a highly localized s
region. ~The condition determining localization of the so
region is specified in Appendix D!. If the soft region is lo-
calized in the vicinity of a point indicated by the angul
coordinatesu0 and w0 on the surface of the spherical ce
one can define the function of softening as

U~u,w!5
U0

R2 sinu0
d~u2u0!d~w2w0!. ~8!

FIG. 6. Diagram of the membrane shape bifurcation driven
the local softening of the actin network. The bifurcation diagra

separates the plane of the parameters« anda3̄ into the parts where
different cell shapes take place. Above line 1 the cell possesse
blister or invagination. The region of coexistence of a spheri
state of the membrane and a state with blister or invagination
sides between lines 1 and 3. The energy of a spherical membra
equal to that of a membrane with a blister or an invagination on
2. Below line 3 the cell inevitably possesses a blister or an inva
nation. In the right-hand part of the phase diagram (a3.0, below
line 2! the membrane has an invagination, whereas in the left-h
part (a3,0, below line 2! it possesses a blister. The transition fro
blister to invagination occurs along line 4 (a350, «<0!. The only
point on the phase diagram in which the bifurcation is soft is«
5a350. Figures~a!–~c! give a schematic view of the membran
~a! Initially spherical membrane containing the soft region in t
actin cortex@~i! the lipid bilayer;~ii ! the actin cortex;~iii ! the soft
region in the actin cortex#. ~b! The cell with the blister localized
over the soft region.~c! The cell with the invagination.
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The details of the solution of Eq.~3! with the softening func-
tion ~8! are discussed in Appendix B, where the exact so
tion is found yielding the eigenfunction in the followin
form:

v1~u,w!5 (
L50

`
~2L11!PL~n•n0!

kL2~L11!22BR2L~L11!1D* R4 , ~9!

wheren is the normal vector with the spherical coordinateu
andw, n0 is the one withu0 andw0 , andn•n0 is their scalar
product.PL(n•n0) is the Legendre polynomial.

The second important case is that of a thin elongated
region. Consider a spherical cell whose membrane is s
ened in a thin region along the equator. The function
softening and the exact solution for the eigenvalue of Eq.~3!
take the form

U5
U0

2pR2 d~u2p/2!, ~10!

v1~u!5 (
L50

`
~2L11!PL~0!PL~cosu!

kL2~L11!22BR2L~L11!1DR4 . ~11!

The exact solutions of Eq.~3! for the eigenfunctions, Eqs.~9!
and ~11!, make it possible to obtain the eigenvalue an
therefore, the instability threshold. In the case described
Eqs.~10! and ~11!, one finds

D* 5 1
4 A3 U0

4/k. ~12!

In the case where the soft region is located in the vicinity
a point, Eq.~8!, one obtains

D* 5U0
2/64k, ~13!

which gives the critical value of the osmotic pressure

p* '
U0

2R

64k
2

4l

R
2

Ecyt

122vcyt
2

2kc

R2 . ~14!

The discussion of functions of softening and details conce
ing methods of obtaining exact and approximate solution
Eq. ~3! in different cases can be found in Appendixes C a
D.

B. Description of the blister shape in the far overcritical
regime

In the far overcritical regime, the above approach ba
on the expansions in series in terms of the amplitude can
be applied. The shape of the blister is determined by a c
petition of bending energy, surface tension of the bilay
and the work of the pressure difference. If the pressure r
extremely fast beyond the bifurcation point, the blister com
rapidly into the far overcritical regime, which results in b
layer cortex splitting. Consider this phenomenon, assum
that the membrane around the overcritical blister is appro
mately flat and represents the lipid bilayer shell that is
cally split from the cortex. The latter is also a shell. Since
is much more rigid and does not support permanent pres
gradients, we neglect its deformation during the process
this geometry the blister energy takes the form
-
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F5E E $ 1
2 ~kcD2c2gcDc!2pc%dA, ~15!

whereg is the surface tension, whence it follows the equ
tion describing the blister is

kD2c2gDc5p. ~16!

Assuming that the defect has a cylindrical symmetry,
look for a cylindrically symmetric solution with the bound
ary conditionsj50; ]j/]r 50 at r 5R, whereR is the de-
fect boundary radius. Since the cortex is much more ri
than the bilayer, the latter undergoes no vertical displa
ment at the rimr 5R of the defect. This is reflected by th
first boundary condition. The second boundary condition
sures that the membrane remains smooth at the rim.
exact solution of Eq.~16! with the above boundary condi
tions takes the form

c5
p

4g H 2RAk

g

I 0S rAg

k D 2I 0S RAg

k D
I 1S RAg

k
D 1R22r 2J ,

~17!

whereI 0,1(z) are modified Bessel functions of the first kin
Substitution of solution~17! into expression~15! yields

the energy release during bending:

F52
pp2R4

16g H 8k

gR2 1124A k

gR2

I 0SAgR2

k D
I 1SAgR2

k D J .

~18!

As soon as the energy release is equal to the energy ne
sary to fracture bonds,F1pR2s50, the splitting of the
membrane from the cell body actually occurs. Heres is the
bond fracture energy per unit area. Therefore the conditio
splitting takes the form

s5
pcr

2 R2

16g H 8k

gR2 1124A k

gR2

I 0SAgR2

k D
I 1SAgR2

k D J ,

~19!

wherepcr is the pressure difference that should be applied
a cell exhibiting a blister with the base radiusR in order to
increase the blister size by splitting the bilayer from the c
tex. In the bending-dominated regimegR2/k!1, the phe-
nomenon is largely independent of the surface tension
this case, expanding the Bessel functions in a power se
one finds

F'2
pp2R6

384k
, pcr'

8A6ks

R2 . ~20!

In the tension-dominated regimegR2/k@1, the energy gain
and the condition of splitting take the form
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F'2
pp2R4

16g
, pcr'

4Ags

R
. ~21!

IV. DISCUSSION

We provide experimental evidence for the shape chan
of composite membranes composed of a lipid bilayer w
associated actin networks in the form of blisters in ar
where the actin cortex has a soft region or a hole. We sh
theoretically that a local softening of the cortex, or of t
bulk cytoskeleton associated with the membrane, gives
to a shape instability that is followed by the formation
blisters. This prediction could be verified for different e
perimental systems such as actin-filled vesicles and cell
the slime moldDictyostelium discoideum. In the case ofDic-
tyostelium discoideum, the actin cortex most likely possesse
a hole that resulted in pressure-induced bleb formation.
presence of the hole in the cortex is suggested by the ob
vation of organelles moving from the inner lumen of the c
into the blister. In the case of actin-filled vesicles, the s
regions are formed by slots between ‘‘tectonic’’ parts of t
actin shell formed by self-assembly beneath the lipid bilay
In this case, the soft regions should be considered as e
gated ones. Our experimental findings together with the
oretical calculations presented here provide good evide
that local membrane shape instabilities can be driven by
cal softening of the cytoskeleton in different cells.

In the region where the actin network is weakened~or
dissolved!, the cell membrane is locally softened. This giv
rise to pronounced local flickering. Such flickering was o
served in the actin-filled vesicle@see Figs. 2~d! and 3~b!#.

As pointed out above, there is an interesting toxicologi
case to be discussed in light of this theoretical analysis:
poisoning effect of phalloidin on the actomyosin system
hepatocytes~the main type of liver cells!. In contrast to most
other cell types, hepatocytes specifically take up phalloid
an alcaloid from the poisonous fungusAmanita phalloides
that binds very specifically to actin and induces the failure
bile flow ~so-called cholestasis! in the living animal@26,27#.
In the livers of rats treated with phalloidin, large cytoplasm
vacuoles derived from cell membranes are observed@28,29#.
A similar effect was observed after the perfusion of isola
rat livers with cytochalasin B, another alkoloid interactin
with actin @30#. In a primary cell culture, on the other han
isolated hepatocytes develop plasma membrane blisters
phalloidin poisoning@31#. With specific antibodies it was
also shown that the myosin was separated from the acti
the region of cell membrane protrusions of isolat
phalloidin-treated hepatocytes@32#. Thus both cases—
protrusions and invaginations of the plasma membran
caused by a disturbance of the actin system have been
served with hepatocytes.

According to the above consideration, one can supp
that this is one of the leading mechanisms providing ins
bility during phalloidin poisoning of these liver cells. Not
that after the administration of phalloidin over a longer p
riod ~days!, there is an increase of both actin and myo
observed in hepatocytes due to genetic induction of actin
myosin synthesis@33,34#. This is probably compensating fo
actomyosin dysfunction as has been shown by Loran
et al. @35#, who also demonstrated a strong long-range
es
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crease of cytoplasmic keratin filaments. Since microtub
are also supposed to play a role in the hepatocyte answ
phalloidin poisoning@36,37#, the entire cytoskeleton in fac
seems to be involved, yet on different time scales. The p
duction of both protrusions and invaginations as an ea
event on the scale of minutes or hours can well be explai
by the theory presented here. Consistent with the bifurca
in our mathematical model, the decision between inside
outside bending of the membrane could be brought abou
differences in osmotic pressure across the membrane.

Recent studies of rat neurons have shown that local de
lymerization of the actin cortex represents a necessary s
preceding axon formation@38#. In particular, it was con-
cluded that local depolymerization of the actin cortex in
growth cone of a single neurite indicates that this is a neu
that will become an axon. Consistently, the absence of lo
actin depolymerization in a growth cone indicates that
latter will form a dendrite. Axon growth is driven by micro
tubules penetrating into distal areas of the growth co
through the defect@38#. Local actin depolymerization may
give rise to the local shape instability~as described above!
representing axon nucleation.

To summarize, we have observed local membrane sh
changes~in the form of blisters! in the region of a local
softening of the actin cortex of the slime moldDictyostelium
discoideumand in actin-filled vesicles. It is in agreeme
with previous observations with phalloidin-poisoned liv
cells and reports on blebbing cells~cf the Introduction!. We
have shown theoretically that a local softening taking pla
in either the cortex or the bulk cytoskeleton adjacent to
membrane will necessarily initiate a shape instability tha
followed by the formation of either blisters or invagination
~depending on the position in the phase diagram!.
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APPENDIX A: PHASE DIAGRAM OF THE BIFURCATION

Minimization ]F/]j50 of the free energy~5! with re-
spect to the amplitudej gives the equation of equilibrium

«V2j1V3ā3j21V4ā4j350. ~A1!

This equation has the trivial solutionj50 and two nontrivial
solutions @Eq. ~7!#. Consider first the trivial solution. The
condition ]2F(j)/]j2>0 with j50 yields the inequality«
.0. Thus while«.0 ~above line 3 in Fig. 6!, the amplitude
value j50 ~describing the cell without blister or invagina
tion! corresponds to the free-energy minimum. The sa
condition ]2F(j)/]j2>0 with the nontrivial solution@Eq.
~7!# yields the inequality

«<
ā3

2

4ā4

V3
2

V2V4
. ~A2!
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Note that due to the Cauchy-Bunyakovsky inequali
V3

2/V2V4,1. Real nontrivial solutions of the equation o
equilibrium ~A1! exist under the condition~A2! ~i.e., below
line 1 in Fig. 6!. The regions«.0 and that described b
~A2! are overlapping. In the domain of intersection 0<«
<ā3

2V3
2/4ā4V2V4 ~between lines 1 and 3 in Fig. 6!, the trivial

and nontrivial solutions of Eq.~A1! coexist, both corre-
sponding to free-energy minima. However, at«.«b ~above
line 2 in Fig. 6! the trivial solution corresponds to the mo
pronounced minimum of the free energy and hence to
equilibrium state. At«5«b ~on line 2 in Fig. 6!, the depth of
the free-energy minimum corresponding toj50 is equal to
that corresponding to the nontrivial solution, Eq.~7!. At «
,«b ~below line 2 in Fig. 6! the nontrivial solution corre-
sponds to the more pronounced minimum. The cell me
brane experiences thermal fluctuations. As soon as the m
mum atjÞ0 becomes more pronounced than that atj50,
fluctuations provide the transition between the two sta
Thus the bifurcation is determined by the equality of the f
energies of the state withj50 and that withjÞ0, Eq. ~7!:
F(0)5F(jÞ0), yielding the bifurcation condition Eq.~6!
~line 2 in Fig. 6!. Thus the solutionj50 is valid at«.«b .
In the bifurcation point«5«b ~6!, the equilibrium corre-
sponds to the nontrivial solution~7!, the amplitudej possess-
ing a finite valuedj0 :

dj052
2a3̄

3a4̄

V3

V4

. ~A3!
on

am

n
y

ze
,

e

-
ni-

s.
e

The bifurcation is therefore analogous to a first-order ph
transition close to second order.

Since ā3,0 corresponds to the case of an invaginati
andā3.0 to that of a blister, the invagination-to-blister tra
sition takes place under the conditiona3̄50, «,0. In a spe-
cial case,ā350, the bifurcation is soft. In this case, the am
plitude j continuously depends on«: j50 for «>0 and
j0

252«V2 /a4̄V4 for «,0. Thus on the plane («,a3̄), the
condition«5a3̄50 determines the isolated point of the so
bifurcation.

The constantx215]2F(j0)/]j0
2 controlling the shape

fluctuations takes the form

FIG. 7. Dependence ofx on «.
x215H «V2 , «>«b

a3̄
2V3

224V2V4a4̄
2«7a3̄V3

Aa3̄
2V3

224V2V4a4̄«

2a4̄V4

, «,«b.
~A4!
of

q.

or-

-

The first branch of the constantx («>«b) corresponds to the
part of the bifurcation diagram above and the second
(«<«b) to the part below line 2~Fig. 6!. The functionx
5x(«) is shown in Fig. 7.

APPENDIX B: EXACT SOLUTIONS OF THE AUXILIARY
EQUATION IN THE CASE OF SOFT REGIONS
IN A CORTEX LOCALIZED IN THE VICINITY

OF A POINT AND THE EQUATOR
OF A SPHERICAL CELL

The problem under consideration depends on two par
eters with the dimension of length:l andd. The former is the
size of the softened region. The latter has the physical se
of a cutoff distance at which the shell deflection caused b
local normal force vanishes@Fig. 1~b!#. The cutoff distanced
is determined by elastic parameters of the shell:d
5(k/D)1/4 @23#. It is therefore independent of the defect si
l. An estimate yieldsd;1027 m. If the size of the soft region
l is much smaller thand ( l !d), the soft region can be
considered to be highly localized. In this case Eq.~3! can be
e

-

se
a

solved exactly. The function of softening takes the form
Eq. ~8!. U0 is the coefficient. The factorU0 /R2 sinu0 is cho-
sen in such a way as to fulfill the conditionrU(u,w)dA
5U0 . The spherical anglesu0 andw0 fix the position of the
soft region. One can expand the solution of Eq.~3! in a series
in terms of spherical harmonics. The exact solution of E
~3! with the function of softening~8! takes the form

v1~u,w!5v1~u0 ,w0!
U0R2

4p

3 (
L50

`
~2L11!PL~n•n0!

kL2~L11!22BR2L~L11!1D* R4 .

~B1!

v1(u0 ,w0) is the value of the eigenfunctionv1 in the point of
localization of the soft region that can be considered a n
malizing constant. Choosingv1(u0 ,w0)54pU0

21R22, one
finds the eigenfunction, Eq.~9!. In order to obtain the eigen
value corresponding to the eigenfunction~B1!, one can use
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the following simple method. Takingu5u0 and w5w0 in
the solution, Eq.~B1!, one gets the equation

4p5U0R2(
L50

`
~2L11!

kL2~L11!22BR2L~L11!1D* R4 ,

~B2!

which gives the eigenvalueL15D* of Eq. ~3! in implicit
form.

Consider the second important case of an elongated
region allowing for an exact solution. Suppose that the a
cortex is softened along the equator of the spherical c
forming a ‘‘belt,’’ so that the width of the softened areal is
small (l !d). Following the same procedure, one obtains
eigenfunction

v1~u!5
U0v1~p/2!R2

4p

3 (
L50

`
~2L11!PL~0!PL~cosu!

kL2~L11!22BR2L~L11!1DR4

~B3!

and the eigenvalue of Eq.~3! in the implicit form

4p5U0R2 (
L50

`
~2L11!PL

2~0!

kL2~L11!22BR2L~L11!1D* R4 .

~B4!

Herev1(p/2) is a normalizing factor. One can choose it
v1(p/2)54pU0

21R22 and obtain the eigenfunction~11!.
Note that since one findsPL(0)50 for oddL, there are only
even terms in the expansions~B3! and ~B4!.

The exact solutions to Eqs.~B1! and ~B2! and Eqs.~B3!
and ~B4! are important since these examples demonst
that auxiliary equation~3! has nontrivial solutions, at leas
for the localized functions of softening, Eqs.~9! and~13!. In
these cases a discrete spectrum exists, and hence the
shape bifurcation takes place. The expressions for the ei
values and the eigenfunctions are, however, too cumbers
to be analyzed analytically. Thus it would be useful to fi
some approach making it possible to find approximate a
lytic solutions of the above problems~see Appendix C!.

APPENDIX C: SOLUTION OF THE AUXILIARY
EQUATION WITHIN A QUASIFLAT

APPROXIMATION

Since the cutoff distanced;1027 m is much smaller than
the cell sizeR;1025 m, one can approximately consider th
problem as that on an infinite plane. The Laplace-Beltra
operator is approximately equal to the two-dimensio
Laplace operator on a plane,D']2/]x21]2/]y2, wherex
andy are the in-plane Cartesian coordinates. This approac
referred to as a quasiflat approximation. Also, estimati
show that the inequalitykD2c}Dc@BDc is valid @23#. In
this case, one can neglect the termBDc in the free energy
~1! and in Eqs.~2! and ~3!. Within the quasiflat approxima
tion one can write the auxiliary equation~3! on the plane
~x,y! in the following form:
oft
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kD2v12U~r !v15D* v1 . ~C1!

Consider a highly localized elongated softened region
the framework of the quasiflat approximation. In this ca
one can express the function of softening in the formU(x)
5U0d(x). One can try to find the solution of Eq.~C1! in
terms of a Fourier expansion:

v1~x!5U0v1~0!E
2`

` exp~ iqx!

kq41D

dq

2p
. ~C2!

Taking x50 in the expression~C2! and performing integra-
tion, one finds the eigenvalue Eq.~11!. Choosingv1(0)51
and performing integration in Eq.~C2! one obtains the exac
expression for the eigenfunction:

v1~x!5exp~2uxu/d& !$cos~x/d& !1sin~ uxu/d& !%.
~C3!

Consider the soft region to be localized in the vicinity
the coordinate origin. In this case, one can express
function of softening asU(r )5U0d(r ), where r5(x,y)
is the in-plane radius vector. Applying the same pr
cedure as the one above obtains the solution in the f
of a Fourier integral: v1(r )5U0v1(0)* exp(iq•r )$kq4

FIG. 8. The eigenfunctionsv1 describing the shapes of the blis
ters. The eigenfunctions are calculated in the quasiflat approxi
tions: ~a! the eigenfunction described by Eq.~C3! representing the
shape of a blister above a narrow elongated soft region~cf the
blisters Figs. 2 and 3!, ~b! the eigenfunction given by Eq.~C4!
describing a blister above a soft region localized in the vicinity o
point.
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1D(p* )%21d2q/(2p)2. Taking r50, here one finds the ei
genvalue Eq.~12! that gives the critical value of the osmot
pressure difference Eq.~13!. Choosing the normalizing fac
tor asv1(0)52p/d2, one finds the solution for the eigen
function

v1~r !52kei~r /d!, ~C4!

wherekei(r /d) is the Kelvin function. The eigenfunction
~C3! and ~C4!, which describe the form of blisters in th
corresponding cases, are shown in Fig. 8. Note that the f
of the eigenfunction~C3! in Fig. 8~a! closely resembles the
shape of the blisters that we observed in the actin-fil
vesicles in Figs. 2 and 3.

Thus we have found a good approximation, making
possible to find simple solutions for the auxiliary equation
the cases of highly localized functions of softening. Ho
ever, it would be useful to justify why this sort of solution
also exists for soft regions with finite sizes. In addition, o
should show that the solutions corresponding to the functi
of softening;d(x) for highly localized soft regions can b
obtained by way of a passage to the limitl /d→0.
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APPENDIX D: SOLUTION OF THE AUXILIARY
EQUATION IN THE CASE OF A SOFT REGION

OF A FINITE SIZE

Consider a soft region in the actin cortex that has a fin
size. Suppose that the cortex is softened along a curve w
curvature radius is much larger than the cutoff distanced. In
this case, one can choose the coordinates in such a way
they axis is directed along the softened region. The funct
of softening depends only onx: U5U(x). Consider the sim-
plest function of softening with the finite sizel:

U~x!5H U0/2l , 2 l<x< l

0, x,2 l ; x. l .
~D1!

One can prove that ifU0/2Dl .1, the solution of Eq.~3! with
the function of softening@Eq. ~D1!# exists. The relation
U0/2Dl .1 can be valid for negative values of the osmo
pressurep. The solution takes the form
v1~x!5H exp~2uxu/d& !@C1 cos~x/d& !1C2 sin~ uxu/d& !#, x<2 l , x> l

C3ch~zx!1C4 cos~zx!, 2 l<x< l ,
~D2!
the

is

s
e
e
o a
rca-
wherej52&(U0/2Dl 21)/d. Ci are the coefficients. The
function v1(x) and its first, second, and third derivative
must be continuous at the boundariesx56 l of the soft re-
gion. This condition gives a homogeneous system of eq
tions for the coefficientsC1 , C2 , C3 , andC4 . Its solvability
requires the determinant of this system to be equal to zer
it is fulfilled, any three of these coefficients can be expres
in terms of the fourth. The latter is an arbitrary one, whic
for reasons of simplicity, can be chosen to be equal to 1.
solvability condition is the equation whose solution gives
spectrum in the implicit form. With a good approximatio
the eigenvalue takes the form
a-

If
d
,
e

e

D* '0.11U0
5/4~2kl !21/410.37U0

3/2l 1/2~2k!21/2. ~D3!

The highly localized soft region can be considered as
limiting case of the finite-size soft region forl /d→0. The
correspondence between the two functions of softening
fixed by the condition*2`

` U(x)dx5U0 . Note that forl /d
→0 the solution~D3! givesA4 64kD3/U0→1 andC1→C2 .
This limit corresponds to the eigenvalue Eq.~11! obtained
for the highly localized function of softening. This justifie
the use of the highly localized function of softening in th
form of thed function. The solutions obtained justify that th
existence of a soft region in the actin cortex gives rise t
shape instability of the membrane as soon as certain bifu
tion conditions are met.
.
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