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Shape instability of a biomembrane driven by a local softening of the underlying actin cortex
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We present a theory showing that local shape instabilities of composite biological membranes, consisting of
a lipid bilayer and an underlying actin cortex, can be triggered by a local softening of the membrane-associated
cytoskeleton. A membrane containing such cortical defects can form blisters or invaginations, depending on
external conditions. The theoretical predictions agree with observations provided by two sets of experiments:
(i) microscopic observations of shape changes of giant vesicles with underlying shells of a thin actin network
show the formation of local blisters ar{d) micropipet aspiration experiments Biictyostelium discoideum
cells in which we observed the formation of blisters in the aspirated cell part. In the latter experiments, the
existence of a hole in the underlying cortex is confirmed by observation of the entrance of cell organelles into
the blister. Our model may also be applied to the formation of lobopodia, fast-growing cell protrusions that
play an important role in the locomotion and spreading of biological cells.

PACS numbes): 87.16—b, 87.19.Rr

[. INTRODUCTION the cytoplasm is greatly reduced as compared to the cortex.
Many of the essential functions of biological ce(s.g.,

This paper describes a mechanical model of the surfacengulfing food, spreading on substrates, and locomptien
protrusions of biological cells. Every mechanical model of aquire the formation of surface protrusiof&-8|. These pro-
cell has to take into account the cell's morphology. A bio-trusions exhibit very different shapes, speeds, and mechani-
logical cell exhibits a layered architecture. The outermostal propertieg6,7]. Therefore it is extremely unlikely that
layer is the fluid mosaic membrane as described by Singahey are all caused by a single underlying mechanism. In this
and Nicolsor{ 1]. It consists of a compound material of phos- paper we will focus on blebs, also called lobopodia. This
pholipids and membrane proteins and shows a thickness afpe of cell protrusion is the most rapidly extending one. The
some nanometers. In parenchymal animal célks, tissue formation of lobopodia is common for healthy cells and
cells such as liver cellson which we will focus for the rest plays an important role in cell spreading on substrates and
of the paper, the plasma membrane carries an additional thicell locomotion. The formation of lobopodia has been exten-
layer of polyelectrolytes at the outside called the glycocalix.sively studied for locomoting blebbing Walker carcinosar-
This fluid mosaic membrane exhibits the properties of a twocoma celld9,10], melanoma cell lines lacking actin-binding
dimensional fluid 2]. proteins[11,12, and locomotingAmoeba proteu§l3].

In close proximity to the fluid mosaic membrane a second On living cells, lobopodiablebs develop in a few sec-
layer, the cortex, followg3—-5]. In most cases, it contains onds. Therefore the initial stages of bleb growth are rarely
high concentrations of microfilamentge., filamentous ac- seen. The shape of a well-developed bleb is close to a spheri-
tin) and crosslinking proteins. This layer has a gel-like con-cal cap. Later on we will show that this is not the case in the
sistency and is very thin compared to the size of the cell. It isvery first stage of lobopodium growth. Growing blebs con-
tightly coupled to the fluid mosaic membrane by colloidal tain no filamentous actin. Their growth can be triggered by
interactions(e.g., electrostatigsand, most importantly, by intracellular pressurgl0,14]. Together with their spherical
specific binding between integral membrane proteins anghape and their rapid growth, this shows that bleb formation
cortical proteins. From the point of view of mechanics, cor-is driven by pressure, either hydrostatic or osmotic. The vol-
tex and membrane usually behave as one layer, from now omme of a bleb increases linearly in time until the growth
termed the “compound membrane.” The fluid mosaic mem-suddenly stops. Interruption of bleb growth occurs due to the
brane serves as a barrier, controlling osmotic pressure arfdrmation of a new cortical structure lining the bleb’s mem-
surface potential, whereas the actin cortex endows the conbrane, i.e., polymerization of actin at the membrane
pound membrane with mechanical stiffneg®., solidlike [6,9,12,13. Most importantly, the cortex and fluid mosaic
properties. membrane split during bleb growth. Blebs grow at locations

The core of the cell is filled with cytoplasm and or- where the cortex is weakendtbr a sketch of this process
ganelles. The cytoplasm also contains cytoskeletal structurese Fig. L This was shown by immunofluorescence tech-
that contribute to the mechanical behavior of the cell. How-niques for Walker carcinosarcoma ce&| and by genetic
ever, in the cells considered here, the density of polymers itechniques for melanoma cell1]. After the initialization at

a weak spot of the cortex, blebs can grow by two different
modes. Either the base of the bléte., the area where the

* Author to whom correspondence should be addressed. “old” cortex is separated from the fluid mosaic membrane
FAX: 49(89) 2891-2469. grows or it remains constant. In the first case, the cortex is
Electronic address: aboulbit@physik.tu-muenchen.de successively peeled off the membrdmsee Fig. 1c)]. This
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FIG. 1. Sketches of the formation of lobopodidebs. The gray
areas symbolize the cortex, the heavy lines the fluid mosaic mem-
brane. The gray lines represent the fluid mosaic membrane at a FIG. 2. Phase-contrast micrograph of an actin-containing vesicle
previous instant(a) Growth at a location where the cortex is weak- at three different temperature@) at 26.0 °C,(B) at 26.7 °C, and
ened.(b) Growth at a cortical hole(c) Bleb expansion by succes- (C) at 32.8°C. ImageD) shows an enlargement of a protrusion
sive pealing; i.e., the base of the bleb groves.Bleb expansion by ~ shown in imaggC) (dotted fram¢ The blister demonstrates mani-
successive inflation; i.e., the base of the bleb remains stationary. fested fluctuations seen as the blurred image of the membrane.

. . Il. LOCAL SHAPE INSTABILITIES DRIVEN BY DEFECTS
happens irAmoeba prOteUElS]. In the latter case, the fluid IN ARTIFICIAL AND NATURAL ACTIN CORTICES:

mosaic membrane flpws yvith respect to the cqt[tla&] to EXPERIMENTS

allow a continuous “inflation” of the bledsee Fig. 1d)]. . o o )

This takes place in melanoma cells devoid of filamin, a ma- A. Local shape instabilities in actin-filled vesicles

jor actin cross-linking proteifl2]. Vesicles filled with polymerized filamentous actin, which

The initial phase of bleb development is a very intriguingforms a thin shell beneath the inner leafl@rtex, provide a
process on which this paper is focused. Here we report thenodel system allowing us to study the mechanical properties
observation of blister formation in regions where the sub-of cell membranes. The method of preparation of the actin-
membraneous cytoskeleton exhibits a local softening irfilled vesicles and their mechanical properties are reported
actin-filled vesicles andictyosteliumcells. We show theo- €lsewherd 16,17. Giant vesiclegdiameter 5-2Qum) were
retically that a local softening of the cytoskeleton necessarilprepared from dimyristoylphosphatidylcholi@MPC) con-
gives rise to an instability of the membrane shape. taining 2.5 mol % of the M§" (C&") ionophore A-23187 in

The paper is organized as follows. We report our experi& solution of monomeric actin at a temperature of 30°C, i.e.,
mental observations of local shape changes of the menVell above the main transition temperature of DMPC of

branes of giant vesicles with reconstituted actin shells in Se@Pout 24 °C. Polymerization of actin was induced by 2 mM
IIA, and of Dictyosteliumcells in Sec. 11 B. In Sec. lll A we MgCl,, the Mg ions being transported into the vesicles via

. .. the ionophore. Polymerization of external actin was sup-
present a general theoretical study of the problem. We intro ressed by DNAase |, an enzyme binding with high speci-

duce a function describing the local softening and deduce a . ) ; . .
haty to monomeric actin, thus preventing the polymeriza-

basic equation that has to be solved to determine the IOCZ:tllon. The actin-containing vesicles were then observed by

shape instability arising from local softening. We give aphase—contrast microscopy on a thermostated stage. Filamen-

complete description of the membrane instability and OVeligus actin concentrated beneath the lipid bilayer, as was

critical behavior assuming that the solution of this equationyamonstrated with fluorescent-labled actidata are not
is found. In Appendixes A—D, we present exact and approxXispown herg

mate solutions of the basic equations for different types of A glight increase in the temperatufiey 1 to 2°Q led to

soft regions. In Sec. IV we discuss our results and their apthe formation of blisters protruding from the surface. Figures
plicability to phenomena observed after the poisoning of2(a)—2(c) show successive shapes of such a vesicle during
liver cells with phalloidin or cytochalasin B, two alcaloids the temperature increase. Figur@3shows a typical phase-
acting specifically on the actin cytoskeleton. In this examplecontrast micrograph of the complete equatorial contour of
the formation of blebs and invaginations is observed dependanother vesicle. One can clearly distinguish flattened regions,
ing on the experimental conditions. This can be easily dewhich exhibit a dark contour, from blisters exhibiting only a
scribed by our theoretical model. faint contour. Observations of video sequences show that the
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FIG. 4. A wild-type AX2Dictyosteliumcell, observed with dif-
ferential interference contrast microscopy, has been aspirated with a
glass micropipet at the cell frofil ). Frequently, formation of small
spherical protrusions occurred in the pipet, here at a suction pres-
sure of 1000 P#a). The arrows denote the position of a certain cell
organelle within the aspirated cell pdH. The transient formation
of a spherical blister can be observed(b). These blisters grow
rapidly until eventually a new stable cell front is formég). Blis-
ters always appear at the site of a defect in the actin cortex of the
cell membrane. While the defect itself cannot be seen, its existence

is clear from the fact that the influx of organelles into the newly

Vesicles were produced as described in the t6Xi. Overview: a formed protrusion is confined to a small pore. The white linéc)n

whole vesicle focused in the equator level. The box marks the aredaks the path taken by the organélle As this organelle is bigger
that is shown enlarged belowB) Detail showing the contour of than the formed pore, the organelle obstructs the pore for a while
one of the blisters protruding from the vesicle showr(4). The before it can squeeze through. Note that the actin cortex remains

white trace was drawn with respect to the dynamic fluctuations otiSible at the old position of the cell frorc, II).
the blister membrane clearly seen on the video record. discoideumby aspiration with glass micropipetsf [19,20

dark regions are relatively stiff, whereas the contours of thdor details aboubDictyosteliumcells). Cylindrical glass mi-
blisters are strongly fluctuating. Both observations, micro-cropipets have been used routinely for determining proper-
scopic contrast and membrane fluctuations, indicate that thées of blood cells or lipid vesiclegfor a review of the mi-
membrane is attached to the “cortex” in the flattened re-Cropipet aspiration technique, sd@l]). The pipet was
gions, whereas it is not supported by a cortex in the blisteconnected to a water manometer, allowing us to apply well-
regions. In Fig. 2d) and 3b), one blister is enlarged, show- defined suction pressures to the cell. In this study, we used
ing that below the membrane protrusion, the dark contour opipets with an inner diameter of aboufn, which is small

the composite actin/membrane cortex is interrupted. This isompared to the typical diameter d@ictyostelium cells,
considered to be a local defegiossibly a cortex holén the  which is about 15um. Cells were cultivated on standard
theory developed below. Note that this type of temperaturemedium agar plates usirifjebsiella aerogeneas a bacterial
induced shape change differs drastically from the shapgod source, and were treated as previously desciip2H
transformations observed experimentally for pure DMPC  Syction pressures of about 800 Pa were used to aspirate

FIG. 3. Actin-containing giant phospholipid vesicle as seen by
phase-contrast video microscopy. Actin concentration wasvi

vesicles and described theoreticly]. parts of the cell membrane and the cytoplaffig. 4(a)].
) o _ ) ) Frequently, cells responded to the applied suction pressure in
B. Local shape instability driven by a defect in the actin a stepwise manner where the repeated formation of small
cortex of a cell plasma membrane during micropipet aspiration  gpnherical protrusions could be observed. These protrusions
of Dictyostelium discoideuncells expanded within fractions of a second to fill the whole pipet

In this set of experiments, we studied the local deformadiameter, leading to a sudden increase in the length of the
tions of amoebalike cells of the slime mobictyostelium aspirated cell part. The shape of these protrusions remained



PRE 62 SHAPE INSTABILITY OF A BIOMEMBRANE DRIVEN . .. 3977

ure 5c) shows the same cell in fluorescence microscopy
about 1 sec after(b). One can clearly identify a bright band
at the position marked by the arrow. This indicates that there
is indeed a cortical structure at the position from which the
protrusion originated, and that splitting of the fluid mosaic
membrane and actin cortex occurred.

Our observations imply that blisters grow from cortical
defects. The process closely resembles the formation of
lobopodia in undisturbed cells. Therefore it may be described
as aspiration-induced formation of lobopodia or blebs.

Ill. THEORETICAL DESCRIPTION OF LOCAL SHAPE
INSTABILITIES OF THE CELL MEMBRANE

The animal cell membrane represents a composite shell
composed of extracellular polymers, a lipid bilayer, and an
actin cortex. We focus on the bilayer and the cortex since
they play an important role in the stability of the cell shape.
Strong attraction between these two subshélsven by
nonspecific forces and integral membrane proteins specifi-
cally binding to cortex componentprovides the integrity of
the composite membrane, which is very important for its
biological functions. Detachment of the bilayer from the cor-
tex demands either very high local mechanical lo@dstake
place, for example, under tether formatiam the application
of biochemical agents to break the bonds of the integral pro-
teins with the cortex.

However, the actin cortex and the underlying cytoskeleton
are dynamic structures. Functional and structural changes of
the states of cells constantly demand local depolymerization
of actin filaments in some cell regions and their local poly-
the small bleblike protrusion in conventional microscdjg that merization in the others. Besides that, local ruptures of the

shown in Fig. 4 (i) the cap,(ii) the protrusion.(C) shows the cortex or the underlying cytoske_leton can already occur at
image of the same cell in fluorescence microscopy. Bright regiond0derate loads or under the action of drugs. These mecha-
denote high actin concentrations. A bright baacdow is visible at ~ NiSMS 1ead to local structural inhomogeneities of the mem-
the base of the newly formed protrusion, indicating the existence oPrane. They manifest themselves in the membrane’s me-
a cortical structure at this position. The white traces were drawrFhanical behavior since they give rise to a local decrease of
beneath the lighter region of the image representing the membrarits rigidity. We show here that such a local softening causes
clearly seen on the video record. shape instabilities of the cell membrane in the form of spon-

. ) taneous local deflections: blisters or invaginations. These in-
spherical throughout the growth process. Protrusion formagtapijities are driven by a gradient of hydrostatic or osmotic
tion occurred at different sites of the front cap of the aspi-pressure across the membrane. Please note that the threshold
rated part of the cellFig. 4(b) shows formation of the pro-  for geflection formation over such defects was observed in
trusion in the middle of the cdpThis suggests that some oy micropipet experiments. In Sec. Il A we show that this
local weakening of the internal structure of the compositenreshold can be explained by a local decrease in the mem-
cell membrane determines the formation and location of thgy gne rigidity. If the pressure only slightly exceeds the
protrusions. Most likely, the weakened structure is thethreshold, the membrane possessing such a defect is de-
membrane-associated actin cortex and the protrusions afgrmed as a whole. However, far from the threshold the pres-
formed above defgcts in the actin shel_l. In some exp_eriment§ure becomes strong enough to overcome the attraction be-
we observed the influx of organelles into an emerging proywyeen bilayer and cortex, which results in the splitting of the

trusion. An example is shown in Figs(b} and 4c). This  compound membrane. This phenomenon is described in Sec.
suggests that the cortical defects are in most cases smaj| g within a simple two-shell model.

cortical pores located right at the base of the protrusion. Ad-
ditional evidence for this notion is provided by fluorescence
studies using mutanDictyosteliumcells that contain actin
that was genetically fused with a green fluorescent protein
(GFP. Using a fluorescence microscope, high concentrations In order to describe a local deflection of the membrane,
of actin such as cortical structures show up as bright regionsne should take into account contributions to the mem-
against the darker background in these mutant cells. Figure Brane’s elastic energy by describing the energetic cost of the
shows the formation of a protrusion for a GFP mutant cell;bending, lateral stretching, and deformation of the bulk cy-
Figs. 5a) and §b) show the cell in differential interference toskeleton[23]. To simplify the mathematical description,
microscopy before and after the protrusion has formed. Figwe consider an initially spherical cell with a radits The

FIG. 5. Shown is the formation of a protrusion for an aspirated
mutant cell of Dictyostelium discoideuncontaining GFP-labeled
actin. (A) The cell aspirated into the micropipet. The arrow indi-
cates the cap of the aspirated p&B) The cell after formation of

A. The cell free energy and a general description of the local
instability
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free energy of an arbitrary distortion of the initigpherical  either the value of the lateral compressibility modulusr
shell shape can be expressed in the fo23] the elasticityE, of the bulk cytoskeleton in the vicinity of
the membrane surface is decreased locally. Both cases result
F= LK A2+ BiA h+ Do) + Laqd+ a0 dA, in a lateral dependence of the paramddgr (0, ¢), wh|ch
jg {2(kpA%y+ByAy+Doy) + 38597+ 32407 can be expressed @(6,¢)=D—U(6,¢), whereD is a
(1) constant. The variation of the parameBgy with the surface

. . - coordinates is taken into account by introducing the function
where k is the membrane-bending elasticity modulus. TheU(0'¢)>0’ which describes the local softening. In the fol-

function = ¢(6,¢) denotes the shell displacement that is,” ‘" ; . . -
normal to the initial spherical surface of the membrade; '°V.V'”9’ U(.a"’o) IS .refferred to as the softe_nmg funct!on.
and ¢ are the spherical angle, is the membrane surface This fl_mctlon exhibits a maximum valu_e n t_he region of
area, and\ is the Laplace-Beltrami operator on the sph&e. soft_enlng and de_cays to zero_out5|de this region. In the fol-
andD are membrane parameters. They are functions of thgjwmg, we consider so_ft regions whose W'd.ths are much

ressure differencp=p,,— Pin, the spontaneous curvature smgllgr than th'e cell radius. O.ne can see that in the case of
P out. Fin actin-filled vesicles, the functiob (0, ¢) is proportional to

C, the Iater?ll compressibility mod_ulus Pf thg membrane the decrease of the-actin concentration in the defects of the
and Young’'s modulus.,; and Poisson’s ratio; of the cortex in such a way that the integrU(R)dA is propor-
bulk cytoskeleton: : YL 9 . propor-
tional to the decrease in the amount of filamentous actin side
PR k(2+cR) p 2kc 4\ the soft regions. In the case of a cell softening, variations of
= 7+ TR 0= R + " + Y the parameteD can arise either from a local softening of the
actin cortex(i.e., related to the local decrease of the lateral
Eept compressibility modulua) or from a local softening of the
+ m underlying cytoskeletofi.e., caused by the local decrease of
& E.- In either case the softening function is related to the
oyl
The first term of Eq(1) describes the bending elasticity of decrease of the actin concentration or the cross-linker density
the membrane. The second term in EL.describes the en- in the soft region of the cortex or of the cytoskeleton.
ergy contribution due to the change of the membrane surface Variation of the energy yields the following equation of
area. The first item ifB represents the well-known Laplace shape equilibrium:
expression for the tension of a spherical surface raéius
subjected to the osmotic pressure differepcéhe second kAZy+BAY+Dy—U(R)y+agy’+a°=0. (2
describes the contribution of the bending elasticity playing
the role of the surface tension. Hence the paranigteom  Equation (2) has the trivial solutiony=0 describing the
the second term of Eq1) should be considered the effective spherical cell shape. However, under certain conditions this
surface-tension coefficient of the membrane. Finally, thesolution becomes unstable and a nontrivial solutis(R)
third term of Eq.(1) describes the membrane energy that is# 0 arises, which describes a nonspherical cell shape. In or-
proportional to the square of the displacementTherefore  der to study the instability threshold, consider an auxiliary
it is analogous to the conventional Hook’s law, with the pa-eigenvalue equation obtained by the linearization of @y.
rameterD playing the role of an effective spring constant of in the vicinity of its trivial solution:
the membrangwith respect to the normal displacement
Several effects, such as the osmotic pressure differéhee kA?%v,+BAv,—U(R)v,=Anvp, ©)
first item), the bending elasticitythe second item the lat-
eral compressibility modulughe third term, and the spring wherev, are the eigenfunctions antl, are the eigenvalues
constant of the bulk cytoskeletdthe last term of expression of the auxiliary equation enumerated byhat in general can
D) contribute to the effective spring constdahtThe bending take discrete and continuous values.
elasticity modulus, the lateral compressibility modulus of  In the following, we outline a possible solution of EQ)
the membrane\, and the spontaneous curvatwere phe- and study general properties of the phenomena, providling
nomenological parameters characterizing mechanical propeandv , have been found. In order to show that such solutions
ties of the composite membrane as a whole, rather than @xist, we then give exact solutions of E@) for several
some of its constituents. softening functions.

Several different phenomena contribute to nonlinear terms  Assume that E(3) possesses a discrete spectrum, or that
of the free-energy expression that are characterized by that least a part of the spectrum is discrete and that we have
coefficientsag anda,. Their detailed discussion is beyond found the eigenvaluesd, (n=1,2,3...; A;<A,< ...)of
the scope of this paper, and we therefore consideanda,  the discrete part of the spectrum and the corresponding
as phenomenological parameters, with always positive eigenfunctions ,(R).
while az can have either sign. Note that in the case of a A solution of Eq.(2) can be found by evoking the theory
homogeneous shell, the parametegsanda, are constants. of branching of nonlinear equatiorfi24]. This theory pre-

In contrast, in the vicinity of an inhomogeneity they may dicts that as soon as the paramelenf Eq. (2) becomes
depend on coordinatesz ;=az 4R). A detailed derivation equal to the first eigenvalug; of the auxiliary equation3),

of the free energy(1l) describing a local deformation of a the trivial solutiongy=0 becomes unstable. Denote this criti-
spherical cell membrane can be found elsewih2gs. cal value of the parametdd as D*=A;(B,k). One can

The undisturbed spherical cell shape corresponds to theonsider this spectral condition as an implicit relation that
value =0. Local softening of the membrane means thatdetermines the critical values of internal cell parametass
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for example, the critical valup* of the osmotic pressure
leading to the instability of the spherical cell shape.
Assume now that the eigenfunctien(R) and the corre-
sponding eigenvalud ; of the auxiliary equation(3) have
been found. As soon as the paramebebecomes smaller
thanD* = A the solutiony(R)#0 branches off the trivial
solution ¢»=0. The main term ofy(R) has the form

P(R)=Ev1(R)+0O(€2) (4)

[24], where ¢ is the amplitude of the local deflection. The
absolute value of the amplitudeis assumed to be small. It
will be determined in such a way that the expression (By.
gives an asymptotically exact solution of E@) [24] de-
scribing the equilibrium cell shape. The dependence of the
solution(4) on spherical coordinate®and ¢ is described by
the eigenfunctionv(R)=v4(6,¢), which we assume to

know. Substituting the solutiof#) into the free-energy func- FIG. 6. Diagram of the membrane shape bifurcation driven by
tional (1) yields the local softening of the actin network. The bifurcation diagram
o _ separates the plane of the parameteasida; into the parts where
F(&)=3eV,£24 V3a383+ 3V, 4,87, (5) different cell shapes take place. Above line 1 the cell possesses no
blister or invagination. The region of coexistence of a spherical
with V,=[{v1(R)}"dA (n=2,3,4), K state of the membrane and a state with blister or invagination re-

zvrglfam(R){vl(R)}mdA, with m=3,4 ande=D—A;. sides between lines 1 and 3. The energy of a spherical membrane is

Th ion f takes int t that i | th equal to that of a membrane with a blister or an invagination on line
€ expression foay, takes into account that In general the , “go|q) jine 3 the cell inevitably possesses a blister or an invagi-

phenomenological parz_;\metm§ anda, may POSSESS SOME \\4ti0n. In the right-hand part of the phase diagraag>0, below
dependence on coordinates in the soft region of t@d'ﬁne 2) the membrane has an invagination, whereas in the left-hand
cortex. If this dependence can be neglected, one fagls part (a;<0, below line 2 it possesses a blister. The transition from
=an. blister to invagination occurs along line 44=0, £<0). The only
Thus the problem is reduced to the investigation of thepoint on the phase diagram in which the bifurcation is soft is
simple functionF (£) [Eq. (5)], the coefficients of which are =a;=0. Figures(a@—(c) give a schematic view of the membrane.
independent of the coordinates. Though the consdpnend (@ Initially spherical membrane containing the soft region in the

a,, are still unknown, the simple structure of the free energ)/:Ct'in ncci’rr]tiﬁ[(') tTii "p'?t db)l'?g’)e%") thﬁ svftth tﬁortsl)i((l"g The Tigﬁ §
F (&) makes it possible to describe some general propertiei%?the Soff rzcionz:; The cell V\(/eitt(w:ethe inva i?nati(fne ocalize
of the bifurcation. From the mathematical point of view, the 9 g '

problem is analogous to that of a description of a phase tran; . : S
sition within the Landau theory, namely to the case when th >0 (a;<0) of the amplitude(7) describes the blister; the

. g . < > i ination.
symmetry allows for the existence of a cubic invarip2f)]. ase¢<0 (a;>0) corresponds fo the invagination. One can

The amplitude plays a role analogous to that of the order Préak the planeg(,as) into parts where the free energy, Eq.
parameter. The equilibrium state corresponds to a globdP): has different minima—this yields the bifurcation dia-
minimum of the free energf(£), Eq. (5). Minimization of ~ 9ram. It is shown in Fig. 6. The detailed analysis and de-
the free energy is described in Appendix A. This analysisSCTiPtion of the bifurcation diagram is given in Appendix A.
shows the following. The equation of equilibriugF/g¢ . 1hus we have shown that if EG3) has a nontrivial solu-
=0 has the trivial solutior=0. This solution describes the ton for a softening functiow (R), the local shape instability
cell without any blister or invagination. It corresponds to the/ises @b =D*. However, we do not have any information

global free-energy minimunand hence to the equilibrium €oncerning the exact form &f(R). Moreover, it depends on
state ats>e,. Here the form of the softening function if Eq3) has a nontrivial

solution. Therefore it is important to verify that E@) has a

sal V2 nontrivial solution corresponding to a discrete spectrum, at
= — (6) least for some functions of softening. This can be done by
9a, V2Va exactly solving Eq(3) for several different reasonable func-

tions of softening. There exists, however, an important case
is the value corresponding to the bifurcation point. At allowing for a universal consideration: a highly localized soft

<g,, one of the two nontrivial solutions, region. (The condition determining localization of the soft
region is specified in Appendix DIf the soft region is lo-

—agVa* VasVi—4V,V,a.e calized in the vicinity of a point indicated by the angular

= 2V, ' () coordinatesf, and ¢y on the surface of the spherical cell,

one can define the function of softening as
corresponds to the equilibrium state. In order to obtain the U
global minimum of the free energy, one must choose in Eq. U(0,0)= ——2— 86— 00) 80— oq). g
(7) the “+" sign if az3<0 and the ‘~"sign if otherwise. If (b.0) R?sin 6, ( 0)ole= ¢o) ®
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The details of the solution of E¢3) with the softening func-

tion (8) are discussed in Appendix B, where the exact solu- F=f f {3 (KpA2— yipAp) — pyhdA, (15
tion is found vyielding the eigenfunction in the following

form: where vy is the surface tension, whence it follows the equa-

tion describing the blister is

o)

(2L+1)P_(n-ng)
vi(09)= 2 7 BRLLT ) o R O KAZg—yAy=p. (16)

wheren is the normal vector with the spherical coordinafes ASSUming that the defect has a cylindrical symmetry, we
and e, n, is the one withd, and ey, andn- g is their scalar look for a cylindrically symmetric solution with the bound-

product.P_(n-ny) is the Legendre polynomial. ary conditions§=0_; ag/a_rzo atr=R, whereR is the de-_ _
The second important case is that of a thin elongated soFﬁCt boundary radius. Since the cortex is much more rigid
region. Consider a spherical cell whose membrane is soft"an the bilayer, the latter undergoes no vertical displace-

ened in a thin region along the equator. The function of €Nt at the rinr =R of the defect. This is reflected by the
softening and the exact solution for the eigenvalue of(8J. first boundary condition. The second boundary condition en-

take the form sures that the membrane remains smooth at the rim. The
exact solution of Eq(16) with the above boundary condi-
Uo tions takes the form
U= 5 0(0—/2), (10
27R

| (r\ﬁ)—l (R\/z
” (2L+1)P_(0)P(cosh) P 2R\/E ’ k/ ° k
Y

”1(‘9)220 KL+ 17 BRAL(L+ D) +DR" P "y '1( R\ﬁ)
k

The exact solutions of E@3) for the eigenfunctions, Eq$9) (17)
and (11), make it possible to obtain the eigenvalue and,

therefore, the instability threshold. In the case described byherelq ,(z) are modified Bessel functions of the first kind.
Egs.(10) and(11), one finds Substitution of solution(17) into expression(15) yields

the energy release during bending:
D* =13/Ud/k. (12)

+R2—r2} |

yR®

In the case where the soft region is located in the vicinity of 7p?R* | 8k [k '0( T)
a point, Eq.(8), one obtains F=- W ij +1-4 y_RZ W
D* = UZ/64k, (13 1 T)

- . . (18)

which gives the critical value of the osmotic pressure
As soon as the energy release is equal to the energy neces-
. USR DN Ecyt 2kc sary to fracture bondsk + wR?0=0, the splitting of the
“B64& R 1— Zvcyt_ RZ (14 membrane from the cell body actually occurs. Heres the

bond fracture energy per unit area. Therefore the condition of
The discussion of functions of softening and details concernsplitting takes the form
ing methods of obtaining exact and approximate solutions of

Eq. (3) in different cases can be found in Appendixes C and | 7’_F\’2
D. p2,R? | 8k k ©° k
o= — 14\,
16y YR vR YR
B. Description of the blister shape in the far overcritical l4 _)
regime k

19

In the far overcritical regime, the above approach based 19
on the expansions in series in terms of the amplitude cannavherep,, is the pressure difference that should be applied to
be applied. The shape of the blister is determined by a comg cell exhibiting a blister with the base radiRsin order to
petition of bending energy, surface tension of the bilayerjncrease the blister size by splitting the bilayer from the cor-
and the work of the pressure difference. If the pressure rise€x. In the bending-dominated regimegR?/k<1, the phe-
extremely fast beyond the bifurcation point, the blister comegiomenon is largely independent of the surface tension. In
rapidly into the far overcritical regime, which results in bi- this case, expanding the Bessel functions in a power series
layer cortex splitting. Consider this phenomenon, assumingne finds
that the membrane around the overcritical blister is approxi-

mately flat and represents the lipid bilayer shell that is lo- Fe o mp°R° _ 8\6ko 20
cally split from the cortex. The latter is also a shell. Since it T 3k PeT TR (20

is much more rigid and does not support permanent pressure
gradients, we neglect its deformation during the process. lin the tension-dominated regimeR?/k>1, the energy gain
this geometry the blister energy takes the form and the condition of splitting take the form
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mp°R* 4\yo crease of cytoplasmic keratin filaments. Since microtubuli
F~— 16y Per= R (21 are also supposed to play a role in the hepatocyte answer to
Y phalloidin poisoning 36,37, the entire cytoskeleton in fact
seems to be involved, yet on different time scales. The pro-
IV. DISCUSSION duction of both protrusions and invaginations as an early

gvent on the scale of minutes or hours can well be explained

We provide experimental evidence for the shape changeb the th ted h Consistent with the bif i
of composite membranes composed of a lipid bilayer with; y the theory presented here. Lonsistent wi € brlurcation
n our mathematical model, the decision between inside or

associated actin networks in the form of blisters in aread! © .
where the actin cortex has a soft region or a hole. We shoﬁUtSIde bending of the membrane could be brought about by

theoretically that a local softening of the cortex, or of thedlffsrence;s ;n d(_)smo]:uc t)ressure icross :]he mtehm?lranel. d
bulk cytoskeleton associated with the membrane, gives risF ecent studiés of rat heurons have shown that local depo-
to a shape instability that is followed by the formation of ymerization of the actin cortex represents a necessary stage
blisters. This prediction could be verified for different ex- p{egeg”t]r? taron Ifgfma}"’m@- 'tf‘ parfug;:lar, lt wastcor)-
perimental systems such as actin-filled vesicles and cells drude at local depolymerization ot the actin cortex in a
the slime moldDictyostelium discoideuntn the case obic- growth cone of a single neurite indicates that this is a neurite

tyostelium discoideunthe actin cortex most likely possessed that‘_t W('j" belcome_ ant_axo_n. Cons:zttﬁntly, th_e gpsetncetr?ftlczﬁal
a hole that resulted in pressure-induced bleb formation. ThACHN d€polymerization in a growth coné indicates that the

presence of the hole in the cortex is suggested by the obs thtt)e{ will form a Qenerte. onnl growth |sfdrr|]ven by rr;:cro—
vation of organelles moving from the inner lumen of the cellm u esh {)hen%tr?tlngslntﬁ |s|ta tgrej\s OI ! € grtc_)vvt cone
into the blister. In the case of actin-filled vesicles, the soft" 049 e defeci38]. Local actin depolymerization may

regions are formed by slots between “tectonic” parts of thedive fise to the local shape instabilifas described aboye

actin shell formed by self-assembly beneath the lipid b”ayer_representlng axon nucleation.
To summarize, we have observed local membrane shape

In this case, the soft regions should be considered as elon-h in the f £ bli in th . f a local
gated ones. Our experimental findings together with the theS anggs(m the orm o isters in t. € region ot a ‘oca
oftening of the actin cortex of the slime mdbictyostelium

oretical calculations presented here provide good evidence: id di n-filled icl Itis |
that local membrane shape instabilities can be driven by lo= Iscoldeumand In actin-filled vesicles. It is in agreement
cal softening of the cytoskeleton in different cells. with previous observations with phalloidin-poisoned liver

In the region where the actin network is weakered cells and reports on blebbing cellsf the Introduction. We

dissolved, the cell membrane is locally softened. This gives.h"’“’e shown theoretically that a local softening taking place

rise to pronounced local flickering. Such flickering was ob-" either the c;ortex or thg bUIk cytoskeletoq adjac;t_ent to the

served in the actin-filled vesiclsee Figs. &) and 3b)]. membrane will necess_anly |n|t_|ate a shape ms_tablllf[y that is
As pointed out above, there is an interesting toxicoIogicalfouo"\’ed_by the format|_o_n Of. either bI|sters_ or invaginations

case to be discussed in light of this theoretical analysis: th&dePending on the position in the phase diagram

poisoning effect of phalloidin on the actomyosin system of

hepatocytesthe main type of liver cells In contrast to most ACKNOWLEDGMENTS
other cell types, hepatocytes specifically take up phalloidin, , )
an alcaloid from the poisonous fungésnanita phalloides This work was supported in part by the Deutsche Fors-

that binds very specifically to actin and induces the failure ofchungsgemeinschaft via the Group Grant No. SFB 266. One
bile flow (so-called cholestasisn the living animal[26,27.  ©f the authors, A. B., was supported by the Alexander von
In the livers of rats treated with phalloidin, large cytoplasmic Humboldt Foundation and by the Deutsche Forschungsge-
vacuoles derived from cell membranes are obsefgegeg. ~ Meinschaft via Grant No. SA 246/28-1.

A similar effect was observed after the perfusion of isolated

rat livers with cytochalasin B, another alkoloid interacting APPENDIX A: PHASE DIAGRAM OF THE BIFURCATION

with actin[30]. In a primary cell culture, on the other hand, o )

isolated hepatocytes develop plasma membrane blisters after Minimization 9F/3¢=0 of the free energy5) with re-
phalloidin poisoning[31]. With specific antibodies it was SPect to the amplitudé gives the equation of equilibrium
also shown that the myosin was separated from the actin in

the region of cell membrane protrusions of isolated eV,oé+ Vaagé?+V,a,8=0. (A1)
phalloidin-treated hepatocytef32]. Thus both cases—

protrusions and invaginations of the plasma membrane—hjs equation has the trivial solutigi=0 and two nontrivial
caused by a disturbance of the actin system have been oBojutions[Eq. (7)]. Consider first the trivial solution. The
served with hepatocytes. condition 9°F (£)/9&2=0 with £=0 vyields the inequality
According to the above consideration, one can suppose.g. Thus whiles >0 (above line 3 in Fig. § the amplitude
that this is one of the leading mechanisms providing instayajue ¢=0 (describing the cell without blister or invagina-

that after the administration of phalloidin over a longer pe-condition 92F (¢)/9£2=0 with the nontrivial solutionEq.
riod (days, there is an increase of both actin and myosin(7)] yields the inequality

observed in hepatocytes due to genetic induction of actin and

myosin synthesi§33,34]. This is probably compensating for —»5 2
i i az Vi

actomyosin dysfunction as has been shown by Loranger < — _

et al. [35], who also demonstrated a strong long-range in- 4a, VoV,

(A2)
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Note that due to the Cauchy-Bunyakovsky inequality, 7 a
V3/V,V,<1. Real nontrivial solutions of the equation of
equilibrium (A1) exist under the conditiofA2) (i.e., below
line 1 in Fig. . The regionse>0 and that described by
(A2) are overlapping. In the domain of intersectior<®
SE§V§/4E4V2V4 (between lines 1 and 3 in Fig),&he trivial

and nontrivial solutions of Eq(Al) coexist, both corre-
sponding to free-energy minima. However,sat ¢, (above

line 2 in Fig. 6 the trivial solution corresponds to the more
pronounced minimum of the free energy and hence to the
equilibrium state. At =g}, (on line 2 in Fig. 6, the depth of
the free-energy minimum correspondingde 0 is equal to
that corresponding to the nontrivial solution, E@). At ¢

<egy (below line 2 in Fig. 6 the nontrivial solution corre-
sponds to the more pronounced minimum. The cell mem- FIG. 7. Dependence of on .
brane experiences thermal fluctuations. As soon as the mini-

mum at£#0 becomes more pronounced than thatat0,  The pifurcation is therefore analogous to a first-order phase
fluctuations provide the transition between the two statesyansition close to second order.

Thus the bifurcation is determined by the equality of the free Sincea;<0 corresponds to the case of an invagination
energies of the state with=0 and that withé#0, Eq.(7):  anda,>0 to that of a blister, the invagination-to-blister tran-
F(0)=F(£+0), yielding the bifurcation condition EdB) i takes place under the conditiag=0, £<0. In a spe-

(line 2:in Fig. 6. Thus the solutiog =0 is valid ate>e,. casea,=0, the bifurcation is soft. In this case, the am-

In the bifurcation pointe =¢,, (6), the equilibrium corre- : . e
sponds to the nontrivial solutiai), the amplitudet possess- plitude ¢ continuously depends oa: £=0 for e=0 and

[V 4

€

ing a finite valuesé,: £0°=—¢eV,lauV, for e<0. Thus on the planes(as), the
conditione =az=0 determines the isolated point of the soft
2a3 V; bifurcation.
S¢p=— — —. (A3) The constanty ™= d?F(&0)/ &5 controlling the shape
3a, Va fluctuations takes the form
eV,, =gy
- [ -
X_ 1= agzvg_ 4V2V4a428 + a3V3 \/a32V§— 4V2V4a48 < (A4)
R y EEp.
2a,V,

The first branch of the constagt(¢=¢,) corresponds to the solved exactly. The function of softening takes the form of
part of the bifurcation diagram above and the second on&q.(8). U, is the coefficient. The factdd,/R? sin 6, is cho-
(e<egp) to the part below line 2Fig. 6). The functiony sen in such a way as to fulfill the conditigflU(0,¢)dA

=x(&) is shown in Fig. 7. =Ug. The spherical angleg, and ¢ fix the position of the
soft region. One can expand the solution of E3).in a series
APPENDIX B: EXACT SOLUTIONS OF THE AUXILIARY in terms of Spherical harmonics. The exact solution of Eq
EQUATION IN THE CASE OF SOFT REGIONS (3) with the function of softeningﬂS) takes the form

IN A CORTEX LOCALIZED IN THE VICINITY
OF A POINT AND THE EQUATOR
OF A SPHERICAL CELL

2
0
v1(0,¢)=v1(6o,p0) ——

The problem under consideration depends on two param- i (2L+1)P.(n-ny)
eters with the dimension of lengthandd. The former is the X > Y=Y e
size of the softened region. The latter has the physical sense (5o kLAL+1)"=BRL(L+1)+D*R
of a cutoff distance at which the shell deflection caused by a (B1)

local normal force vanishd$-ig. 1(b)]. The cutoff distancel

is determined by elastic parameters of the shell: v,(6g,¢0) is the value of the eigenfunctian, in the point of
=(k/D)Y4[23]. It is therefore independent of the defect sizelocalization of the soft region that can be considered a nor-
|. An estimate yieldsi~ 10"’ m. If the size of the soft region malizing constant. Choosing;( 6y, ®o) :47TU0_1R_2, one

[ is much smaller thard (I<d), the soft region can be finds the eigenfunction, E¢9). In order to obtain the eigen-
considered to be highly localized. In this case B).can be value corresponding to the eigenfuncti®i), one can use
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the following simple method. Taking= 6, and ¢= ¢ in [ vi(x)
the solution, Eq(B1), one gets the equation

b U] (2L+1)
o & kL?(L+1)>-BR’L(L+1)+D*R*’

(B2)

which gives the eigenvalua,=D* of Eq. (3) in implicit
form.
Consider the second important case of an elongated soft
region allowing for an exact solution. Suppose that the actin h - X
cortex is softened along the equator of the spherical cell, @
forming a “belt,” so that the width of the softened arkés
small (<d). Following the same procedure, one obtains the
eigenfunction v,(r)

Uovi(7/2)R? 0.8
4ar

oo

v1(0)=

(2L+1)P_(0)P_(cosh) "

X 2 AL+ I?-BRL(L+ 1)+ DR o al
(B3)

0.2t
and the eigenvalue of E@3) in the implicit form

“ (2L+1)P{(0) 2 4 6 |
_ 2
4m=UoR 2 1 T BRLLT D) T DR (b)
(B4)

FIG. 8. The eigenfunctions, describing the shapes of the blis-

Herev,(m/2) is a normalizing factor. One can choose it asters- The eigenfunctions are calculated in the quasiflat approxima-
v1(7-r/2):47TU51R_2 and obtain the eigenfunctiofill). tions: (a) the eigenfunction described by E@3) representing the

. . _ shape of a blister above a narrow elongated soft regadrthe

2‘\?;?] ttr;?rgrz?r?ihoeniiln::s&igoﬂ)%)o afr?(rj ?Sj)l" there are only blisters Figs. 2 and )3 (b) the eigenfunction given by EqC4)
. P " describing a blister above a soft region localized in the vicinity of a

The exact solutions to EqéB1) and (B2) and Eqgs.(B3) oint

and (B4) are important since these examples demonstratg '
that auxiliary equatior(3) has nontrivial solutions, at least 2 -

for the localized functions of softening, Eq8) and(13). In kA%, =U(r)vy=D%v;. CD
these cases a discrete spectrum exists, and hence the localconsider a highly localized elongated softened region in
shape bifurcation takes place. The expressions for the €igefye framework of the quasiflat approximation. In this case

values and the eigenfunctions are, however, too cumbersomg, can express the function of softening in the fdJifx)

to be analyzed analytically. Thus it would be useful to find _ 5(x). One can try to find the solution of E4CY) in
some approach making it possible to find approximate anat'errr?s of a Fourier expansion:

lytic solutions of the above problenisee Appendix €

~ expligx) dg
APPENDIX C: SOLUTION OF THE AUXILIARY vl(x):UOUl(O)J,x kq*+D 2w €2
EQUATION WITHIN A QUASIFLAT
APPROXIMATION Takingx=0 in the expressiofC2) and performing integra-

tion, one finds the eigenvalue E@d.1). Choosingv,(0)=1

. . " _7 .
thestl:gtl:les;[;]de?il«]'{lcgj Sﬁ‘agrfg calr?a mr(lysxirpnﬁ2|sr2§2§ig:ﬁ?1e and performing integration in EC2) one obtains the exact
' bp y expression for the eigenfunction:

problem as that on an infinite plane. The Laplace-Beltrami
operator is approximately equal to the two-dimensional . (x)=exp(—|x|/dv2){cogx/dv2)+sin(|x|/dv2)}.
Laplace operator on a pland~ %/ x>+ %/ dy?, wherex (

andy are the in-plane Cartesian coordinates. This approach is

referred to as a quasiflat approximation. Also, estimations Consider the soft region to be localized in the vicinity of
show that the inequalitkAZyocDy>BAy is valid [23]. In  the coordinate origin. In this case, one can express the
this case, one can neglect the teBi ¢ in the free energy function of softening asJ(r)=Uqd(r), where r=(x,y)

(1) and in Egs.(2) and(3). Within the gquasiflat approxima- is the in-plane radius vector. Applying the same pro-
tion one can write the auxiliary equatid) on the plane cedure as the one above obtains the solution in the form
(xy) in the following form: of a Fourier integral: v,(r)=Ug(0)S explq-r){kg*
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+D(p*)}~d2q/(27)2 Takingr=0, here one finds the ei- APPENDIX D: SOLUTION OF THE AUXILIARY
genvalue Eq(12) that gives the critical value of the osmotic EQUATION IN THE CASE OF A SOFT REGION
pressure difference E@13). Choosing the normalizing fac- OF A FINITE SIZE

tor asv,(0)=2w/d?, one finds the solution for the eigen-

Consider a soft region in the actin cortex that has a finite
size. Suppose that the cortex is softened along a curve whose
v(r)=—kei(r/d), (C4) cu_rvature radius is much larger than _the cut_off distashda
this case, one can choose the coordinates in such a way that
they axis is directed along the softened region. The function
of softening depends only on U=U(x). Consider the sim-
r%leSt function of softening with the finite size

function

wherekei(r/d) is the Kelvin function. The eigenfunctions
(C3) and (C4), which describe the form of blisters in the
corresponding cases, are shown in Fig. 8. Note that the for
of the eigenfunctio(C3) in Fig. 8@a) closely resembles the
shape of the blisters that we observed in the actin-filled
vesicles in Figs. 2 and 3. Uog/2l, —lI=sx=I

Thus we have found a good approximation, making it U =1, w1 x> (D1)
possible to find simple solutions for the auxiliary equation in ’ ' '
the cases of highly localized functions of softening. How-
ever, it would be useful to justify why this sort of solutions
also exists for soft regions with finite sizes. In addition, oneOne can prove that il ,/2DI> 1, the solution of Eq(3) with
should show that the solutions corresponding to the functionthe function of softening Eq. (D1)] exists. The relation
of softening~ &8(x) for highly localized soft regions can be Uy/2DI>1 can be valid for negative values of the osmotic

obtained by way of a passage to the litdil — 0. pressurep. The solution takes the form
exp(— |x|/dv2)[C, cog x/dv2) + C, sin(|x|/dv2)], x=-—I, x=1 oo
01)=1 6 eh(£x)+ Cy cog £X), Cl=x<I, (b2)

* 5/4 —1/4 3121 1/2 -12
where £=2v2(Uy/2DI—1)/d. C; are the coefficients. The D*~0.11g7(2kl) "+ 0.3 174(2k) ™= (D3)

function v,(x) and its first, second, and third derivatives The highly localized soft region can be considered as the
must be continuous at the boundaries =1 of the soft re- limiting case of the finite-size soft region fofd—0. The
gion. This condition gives a homogeneous system of equa(;orrespondence between the two functions of softening is

tions for the coefficient€,, C,, C5, andC,. Its solvability fixed by the (?ondlt|onf-_mU4(x_3)dx=Uo. Note that forl /d
requires the determinant of this system to be equal to zero. If_p the-solutlon(D3) gives 64k.D /Uo—1 andC1—>.C2.

it is fulfilled, any three of these coefficients can be expresse his limit corresponds fo the eigenvalue Bq1) obtained

. ’ . . —— “for the highly localized function of softening. This justifies
in terms of the four'Fh: The latter is an arbitrary one, Wh'Ch’the use of the highly localized function of softening in the
for reasons of simplicity, can be chosen to be equal to 1. Thgym of the s function. The solutions obtained justify that the
solvability condition is the equation whose solution gives theexistence of a soft region in the actin cortex gives rise to a
spectrum in the implicit form. With a good approximation, shape instability of the membrane as soon as certain bifurca-
the eigenvalue takes the form tion conditions are met.
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